Dear all,
In order to simulate thermal lattice Boltzmann method (conduction), what is the right way to apply Dirichlet boundary condition on wall (for example, west wall is maintain at constant temperature T=Tw) for which distribution functions f1, f5 and f8 are unknowns? Similarly other walls are maintained at constant temperatures.
6 2 5
\ | /
\ | /
3-----0-----1
/ |
/ |
7 4 8
Type (1)
f(5,1,1)=w(5)*tw+w(7)*tw-f(7,2,2)
do j=2,ny-1
f(1,1,j)=w(1)*tw+w(3)*tw-f(3,2,j)
f(5,1,j)=w(5)*tw+w(7)*tw-f(7,2,j+1)
f(8,1,j)=w(8)*tw+w(6)*tw-f(6,2,j-1)
end do
f(8,1,ny)=w(8)*tw+w(6)*tw-f(6,2,ny-1)
Type (2)
do j=1,ny
f(1,1,j)=w(1)*tw+w(3)*tw-f(3,1,j)
f(5,1,j)=w(5)*tw+w(7)*tw-f(7,1,j)
f(8,1,j)=w(8)*tw+w(6)*tw-f(6,1,j)
end do
Results with Type (1) close with FVM results but it spoils the boundary temperature, on the other hand, results with type (2) maintain the correct boundary temperature but interior temperatures are not matches with FVM results.