Problem on implement the single component multiphase Shan-Chen model

Dear friends,
Recently I write a Fortran code to implement the single component multiphase Shan-Chen model based on Mike Sukop’s book and code.However, I find it is not right.Could you help me to find the mistake?Thanks in advance and best regards.Thes code is as follow:

C A short and simple gravity-driven LBM solver based on the code snippets
C in Sukop and Thorne’s ‘Lattice Boltzmann Modeling’

C Note indexing differences between book’s C code and FORTRAN:
C C uses 0 for the first index value, while FORTRAN starts at one.
C Numerous changes are needed. In some places, we have just
C explicitly added one to the C index.

  [code="fortran"]

parameter(ly=201,lx=201)

CHARACTER(len=10)::filename,form
  
  integer is_solid_node(ly,lx)
  real rho(ly,lx),f(ly,lx,9),ftemp(ly,lx,9),ex(9),ey(9),
 +     u_x(ly,lx),u_y(ly,lx),x(ly,lx),y(ly,lx),feq(ly,lx,9),
 +     psi(ly,lx)

  tau = 1.
  wm=1./9.
wd=1./36.

C Set solid nodes at walls on top and bottom

  is_solid_node=0      !periodic boundary at all sides

C Set initial density

  do j=1,ly
  do i=1,lx
CALL random_number(t)        ! random number between 0 and 1
rho(j,i)=200.0*t             ! initial density at each node
  f(j,i,1) = (4./9. )*rho(j,i)
  f(j,i,2) = (1./9. )*rho(j,i)
  f(j,i,3) = (1./9. )*rho(j,i)
  f(j,i,4) = (1./9. )*rho(j,i)
  f(j,i,5) = (1./9. )*rho(j,i)
  f(j,i,6) = (1./36.)*rho(j,i)
  f(j,i,7) = (1./36.)*rho(j,i)
  f(j,i,8) = (1./36.)*rho(j,i)
  f(j,i,9) = (1./36.)*rho(j,i)
  enddo
  enddo

C Define lattice velocity vectors

  ex(0+1)= 0
  ey(0+1)= 0
  ex(1+1)= 1
  ey(1+1)= 0
  ex(2+1)= 0
  ey(2+1)= 1
  ex(3+1)=-1
  ey(3+1)= 0
  ex(4+1)= 0
  ey(4+1)=-1
  ex(5+1)= 1
  ey(5+1)= 1
  ex(6+1)=-1
  ey(6+1)= 1
  ex(7+1)=-1
  ey(7+1)=-1
  ex(8+1)= 1
  ey(8+1)=-1

C Time loop

  do is=0,300

C Computing macroscopic density, rho, and velocity, u=(ux,uy).
do j=1,ly

    do i=1,lx
        
  u_x(j,i) = 0.0
  u_y(j,i) = 0.0
  rho(j,i) = 0.0

    
        if(is_solid_node(j,i).eq.0) then
            
            do k=1,9
                
                rho(j,i) = rho(j,i) + f(j,i,k)
                                   
                u_x(j,i) = u_x(j,i) + ex(k)*f(j,i,k)
                u_y(j,i) = u_y(j,i) + ey(k)*f(j,i,k)
                
            enddo

            u_x(j,i) = u_x(j,i)/rho(j,i)
            u_y(j,i) = u_y(j,i)/rho(j,i)

          psi(j,i)=4.0*exp(-200.0/rho(j,i))  ! interaction potential

        endif

C Add space matricies for plotting
x(j,i)=i
y(j,i)=j

  enddo
  enddo

C Compute the equilibrium distribution function, feq.

  f1=3.
  f2=9./2.
  f3=3./2.

  do j=1,ly   
    
    do i=1,lx
     !!!! periodic boundary at all sides

      if(i.gt.1) then
          in = i-1
       else 
          in =lx
       endif
           
     if(i.lt.LX) then 
          ip = i+1
       else 
          ip = 1
       endif

      
       if(j.gt.1) then 
          jn = j-1
       else
          jn = ly
       endif
    
       if(j.lt.ly) then
          jp = j+1
       else 
          jp = 1
       endif

   fx=0.0
 fy=0.0           
               
  if(is_solid_node(j,i).eq.0) then
  
  ! compute the interaction force
fx=wm*(psi(j,ip)-psi(j,in))                                
fx=fx+wd*(psi(jp,ip)-psi(jp,in)-psi(jn,in)+psi(jn,ip) )    

fy=wm*(psi(jp,i)-psi(jn,i))                                
fy=fy+wd*( psi(jp,ip)+psi(jp,in)-psi(jn,in)-psi(jn,ip) )   


fx=120.*psi(j,i)*fx

fy=120.*psi(j,i)*fy
            

            rt0 = (4./9. )*rho(j,i)
            rt1 = (1./9. )*rho(j,i)
            rt2 = (1./36.)*rho(j,i)

            ueqxij =  u_x(j,i)+tau*fx/rho(j,i)   ! care about this place
            ueqyij =  u_y(j,i)+tau*fy/rho(j,i)   ! care about this place
            uxsq   =  ueqxij * ueqxij
            uysq   =  ueqyij * ueqyij
            uxuy5  =  ueqxij +  ueqyij
            uxuy6  = -ueqxij +  ueqyij
            uxuy7  = -ueqxij -ueqyij
            uxuy8  =  ueqxij -ueqyij
            usq    =  uxsq + uysq

            
            feq(j,i,0+1) = rt0*(1.                      - f3*usq)
            feq(j,i,1+1) = rt1*(1.+ f1*ueqxij+f2*uxsq - f3*usq)
            feq(j,i,2+1) = rt1*(1.+ f1*ueqyij+f2*uysq - f3*usq)
            feq(j,i,3+1) = rt1*(1.- f1*ueqxij+f2*uxsq - f3*usq)
            feq(j,i,4+1) = rt1*(1.- f1*ueqyij+f2*uysq - f3*usq)
            feq(j,i,5+1) = rt2*(1.+ f1*uxuy5 +f2*uxuy5*uxuy5-f3*usq)
            feq(j,i,6+1) = rt2*(1.+ f1*uxuy6 +f2*uxuy6*uxuy6-f3*usq)
            feq(j,i,7+1) = rt2*(1.+ f1*uxuy7 +f2*uxuy7*uxuy7-f3*usq)
            feq(j,i,8+1) = rt2*(1.+ f1*uxuy8 +f2*uxuy8*uxuy8-f3*usq)

            
        endif
     enddo
     
  enddo

C Collision step.
do j=1,ly
do i=1,lx

        if(is_solid_node(j,i).eq.1) then               

C Standard bounceback

            temp= f(j,i,1+1)
            f(j,i,1+1) = f(j,i,3+1)
            f(j,i,3+1) = temp
            temp= f(j,i,2+1)
            f(j,i,2+1) = f(j,i,4+1)
            f(j,i,4+1) = temp
            temp= f(j,i,5+1)
            f(j,i,5+1) = f(j,i,7+1)
            f(j,i,7+1) = temp
            temp= f(j,i,6+1)
            f(j,i,6+1) = f(j,i,8+1)
            f(j,i,8+1) = temp
            
        else  

C Regular collision

            do k=1,9
                               
                f(j,i,k) = f(j,i,k)-( f(j,i,k) - feq(j,i,k))/tau
                
            enddo 
            
        endif
    enddo
    
  enddo

C Streaming step; subtle changes to periodicity here due to indexing

  do j=1,ly

    if (j.gt.1) then 
        jn = j-1
    else
        jn = ly
    endif
    
    if (j.lt.ly) then
        jp = j+1
    else 
        jp = 1
    endif

    do i=1,lx

        if (i.gt.1) then
            in = i-1
        else 
            in = lx 
        endif
        if (i.lt.LX) then 
            ip = i+1
        else 
            ip = 1
        endif

        ftemp(j,i,0+1)  = f(j,i,0+1)
        ftemp(j,ip,1+1) = f(j,i,1+1)
        ftemp(jp,i,2+1) = f(j,i,2+1)
        ftemp(j,in,3+1) = f(j,i,3+1)
        ftemp(jn,i ,4+1) = f(j,i,4+1)
        ftemp(jp,ip,5+1) = f(j,i,5+1)
        ftemp(jp,in,6+1) = f(j,i,6+1)
        ftemp(jn,in,7+1) = f(j,i,7+1)
        ftemp(jn,ip,8+1) = f(j,i,8+1)

  enddo
  enddo

  f=ftemp

!export the results
IF(MOD(is,1).EQ.0)THEN
write(,) “is=”,is

SELECT CASE (INT(is))
       CASE(0:9)
            WRITE(form,'(i1)') INT(is)
	   CASE(10:99)
            WRITE(form,'(i2)') INT(is)
	   CASE(100:999)
            WRITE(form,'(i3)') INT(is)
	   CASE(1000:9999)
	        WRITE(form,'(i4)') INT(is)
	   CASE(10000:99999)
	        WRITE(form,'(i5)') INT(is)
	   CASE(100000:999999)
	        WRITE(form,'(i6)') INT(is)
ENDSELECT
  WRITE(filename,*) trim(form), ".dat"
open(unit=20,file=filename,status='unknown')
WRITE(20,*) 'variables = x, y, u, v,density '                                                   
  WRITE(20,*) 'zone i=',lx,',j=',ly,' f=point'
do j=1,ly
do i=1,lx
    write(20,*) x(j,i),y(j,i),u_x(j,i),u_y(j,i),rho(j,i)
a=a+rho(j,i)
  enddo
  enddo
close(20)

ENDIF

C End time loop
enddo

  pause
  end

I have already find the mistake,the initial density should be 200.0+t instead 200.0*t.

Hello,
what is a in the following line;
a=a+rho(j,i) ?